Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 12: 1348365, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38544976

RESUMO

Biosurfactants are surface-active molecules with unique qualities and various uses. Many microorganisms produce secondary metabolites with surface-active characteristics that serve various antiviral functions. The HIV and Zika viruses were chosen for this study because they can spread from mother to child and result in potentially fatal infections in infants. Halophilic bacteria from the Red Sea solar saltern in Egypt were screened using drop collapse, emulsification activity, and oil displacement assays to produce biosurfactants and emulsifiers. Halobacterium jilantaiense strain JBS1 was the most effective strain of the Halobacteriaceae family. It had the best oil displacement test and emulsification activity against kerosene and crude oil, respectively. Among the ten isolates, it produced the most promising biosurfactant, also recognized by the GC-MASS library. This study evaluated biosurfactants from halophilic bacteria as potential antiviral drugs. Some of the computer methods we use are molecular docking, ADMET, and molecular dynamics. We use model organisms like the HIV reverse transcriptase (PDB: 5VZ6) and the Zika virus RNA-dependent RNA polymerase (ZV-RdRP). Molecular docking and molecular dynamics make the best complexes with 5VZ6 HIV-RT and flavone (C25) and 5wz3 ZV-RdRP and ethyl cholate (C8). Testing for ADMET toxicity on the complex revealed that it is the safest medicine conceivable. The 5VZ6-C25 and 5wz3-C8 complexes also followed the Lipinski rule. They made five hydrogen bond donors and ten hydrogen bond acceptors with 500 Da MW and a 5:1 octanol/water partition coefficient. Finally, extreme settings require particular adaptations for stability, and extremophile biosurfactants may be more stable.

2.
Histochem Cell Biol ; 161(2): 165-181, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37847258

RESUMO

Burn injuries pose a significant healthcare burden worldwide, often leading to long-term disabilities and reduced quality of life. To explore the impacts of the transplantation of mesenchymal stem cells (MSCs) on the healing of burns and the levels of serum cytokines, 60 fully grown Sprague-Dawley rats were randomly divided into three groups (n = 20 each): group I (control), group II (burn induction), and group III (burn induction + bone marrow (BM)-MSC transplantation). Groups II and III were further divided into four subgroups (n = 5 each) based on euthanasia duration (7, 14, 21, and 28 days post transplant). The experiment concluded with an anesthesia overdose for rat death. After 7, 14, 21, and 28 days, the rats were assessed by clinical, laboratory, and histopathology investigations. The results revealed significant improvements in burn healing potentiality in the group treated with MSC. Furthermore, cytokine levels were measured, with significant increases in interleukin (IL)-6 and interferon alpha (IFN) observed, while IL-10 and transforming growth factor beta (TGF-ß) decreased at 7 days and increased until 28 days post burn. Also, the group that underwent the experiment exhibited increased levels of pro-inflammatory cytokines and the anti-inflammatory cytokine IL-10 when compared to the control group. Histological assessments showed better re-epithelialization, neovascularization, and collagen deposition in the experimental group, suggesting that MSC transplantation in burn wounds may promote burn healing by modulating the immune response and promoting tissue regeneration.


Assuntos
Transplante de Células-Tronco Mesenquimais , Pele , Ratos , Animais , Pele/metabolismo , Interleucina-10/metabolismo , Qualidade de Vida , Ratos Sprague-Dawley , Cicatrização , Citocinas/metabolismo
3.
Plants (Basel) ; 12(11)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37299200

RESUMO

Water deficit is a significant environmental stress that has a negative impact on plant growth and yield. In this research, the positive significance of kaolin and SiO2 nanoparticles in moderating the detrimental effects of water deficit on maize plant growth and yield is investigated. The foliar application of kaolin (3 and 6%) and SiO2 NPs (1.5 and 3 mM) solutions increased the growth and yield variables of maize plants grown under normal conditions (100% available water) and drought stress conditions (80 and 60% available water (AW)). In addition, plants treated with SiO2 NPs (3 mM) demonstrated increased levels of important osmolytes, such as proline and phenol, and maintained more of their photosynthetic pigments (net photosynthetic rate (PN), stomatal conductance (gs), intercellular CO2 concentration (Ci), and transpiration rate (E)) than with other applied treatments under either stress or non-stress conditions. Furthermore, the exogenous foliar application of kaolin and SiO2 NPs also reduced the amounts of hydroxyl radicals (OH), superoxide anions (O2), hydrogen peroxide (H2O2), and lipid peroxidation in maize plants experiencing a water deficit. In contrast, the treatments led to an increase in the activity of antioxidant enzymes such as peroxidase (POX), ascorbate peroxidase (APX), glutathione peroxidase (GR), catalase (CAT), and superoxide dismutase (SOD). Overall, our findings indicate the beneficial impact of the application of kaolin and silicon NPs, particularly the impact of SiO2 NPs (3 mM) on managing the negative, harmful impacts of soil water deficit stress in maize plants.

4.
Genes (Basel) ; 14(2)2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36833250

RESUMO

Viruses are the most abundant living things and a source of genetic variation. Despite recent research, we know little about their biodiversity and geographic distribution. We used different bioinformatics tools, MG-RAST, genome detective web tools, and GenomeVx, to describe the first metagenomic examination of haloviruses in Wadi Al-Natrun. The discovered viromes had remarkably different taxonomic compositions. Most sequences were derived from double-stranded DNA viruses, especially from Myoviridae, Podoviridae, Siphoviridae, Herpesviridae, Bicaudaviridae, and Phycodnaviridae families; single-stranded DNA viruses, especially from the family Microviridae; and positive-strand RNA viruses, especially from the family Potyviridae. Additionally, our results showed that Myohalovirus chaoS9 has eight Contigs and is annotated to 18 proteins as follows: tail sheath protein, tco, nep, five uncharacterized proteins, HCO, major capsid protein, putative pro head protease protein, putative head assembly protein, CxxC motive protein, terl, HTH domain protein, and terS Exon 2. Additionally, Halorubrum phage CGphi46 has 19 proteins in the brine sample as follows: portal protein, 17 hypothetical proteins, major capsid protein, etc. This study reveals viral lineages, suggesting the Virus's global dispersal more than other microorganisms. Our study clarifies how viral communities are connected and how the global environment changes.


Assuntos
Siphoviridae , Vírus , Humanos , Lagos , Proteínas do Capsídeo/genética , Vírus/genética , Myoviridae/genética , Biodiversidade
5.
Int J Biol Macromol ; 194: 306-316, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34871657

RESUMO

Herein, a novel chitosan/silver/Mn0.5Mg0.5Fe2O4 (Cs/Ag/MnMgFe2O4) nanocomposite was synthesized with gamma irradiation assistant. The prepared Cs/Ag/MnMgFe2O4 nanocomposite was characterized via EDX, XRD, SEM, UV-vis spectroscopy. To evaluate the effects of soak low and high-dose nanocomposite on physiological parameters, photosynthetic pigments, antioxidant and non-antioxidant enzymes of cabbage under Cd stress, a factorial experiment was conducted based on CRD with five replications. The Cd stress decreased the morphological characteristics and photosynthetic pigments while increasing cabbage's antioxidant and non-antioxidant enzymes. The application of low and high-dose of nanocomposite decreased Cd content in leaves by about 42.86%, 60.48%, and the root by approximately 18.72%, 28.72%, respectively, and translocation factors and tolerance index, H2O2, O2, and malondialdehyde. In contrast, the application of high of the nanocomposite increased the values of SPAD chlorophyll about 27.50%, stomatal conductance about 87.18%, net photosynthetic rate about 44.90%, intercellular CO2 concentration about 32.00%, and transpiration rate about 85.20%, as compared to Cd stress. Furthermore, the application of low and high-dose Cs/Ag/MnMgFe2O4 nanocomposite enhances the antioxidant and non-antioxidant enzymes of the cabbage plant compared to Cd stress. Generally, it was conducted that Cs/Ag/MnMgFe2O4 nanocomposite can be used as a proper tool for increasing cabbage plants under Cd stress.


Assuntos
Brassica/metabolismo , Cádmio/metabolismo , Quitosana/química , Compostos Férricos/química , Raios gama , Nanocompostos/química , Desenvolvimento Vegetal , Prata/química , Antioxidantes/metabolismo , Transporte Biológico , Técnicas de Química Sintética , Metais/química , Espécies Reativas de Oxigênio/metabolismo , Análise Espectral
6.
Biomedicines ; 9(4)2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33800632

RESUMO

Klebsiella pneumoniae is a hazardous opportunistic pathogen that is involved in many serious human diseases and is considered to be an important foodborne pathogen found in many food types. Multidrug resistance (MDR) K. pneumoniae strains have recently spread and increased, making bacteriophage therapy an effective alternative to multiple drug-resistant pathogens. As a consequence, this research was conducted to describe the genome and basic biological characteristics of a novel phage capable of lysing MDR K. pneumoniae isolated from food samples in Egypt. The host range revealed that KPP-5 phage had potent lytic activity and was able to infect all selected MDR K. pneumoniae strains from different sources. Electron microscopy images showed that KPP-5 lytic phage was a podovirus morphology. The one-step growth curve exhibited that KPP-5 phage had a relatively short latent period of 25 min, and the burst size was about 236 PFU/infected cells. In addition, KPP-5 phage showed high stability at different temperatures and pH levels. KPP-5 phage has a linear dsDNA genome with a length of 38,245 bp with a GC content of 50.8% and 40 predicted open reading frames (ORFs). Comparative genomics and phylogenetic analyses showed that KPP-5 is most closely associated with the Teetrevirus genus in the Autographviridae family. No tRNA genes have been identified in the KPP-5 phage genome. In addition, phage-borne virulence genes or drug resistance genes were not present, suggesting that KPP-5 could be used safely as a phage biocontrol agent.

7.
Molecules ; 26(5)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801530

RESUMO

Tomato mosaic virus (ToMV) is one of the economically damageable Tobamovirus infecting the tomato in Egypt that has caused significant losses. It is therefore of great interest to trigger systemic resistance to ToMV. In this endeavor, we aimed to explore the capacity of ZnO-NPs (zinc oxide nanoparticles) to trigger tomato plant resistance against ToMV. Effects of ZnO-NPs on tomato (Solanum lycopersicum L.) growth indices and antioxidant defense system activity under ToMV stress were investigated. Noticeably that treatment with ZnO-NPs showed remarkably increased growth indices, photosynthetic attributes, and enzymatic and non-enzymatic antioxidants compared to the challenge control. Interestingly, oxidative damage caused by ToMV was reduced by reducing malondialdehyde, H2O2, and O2 levels. Overall, ZnO-NPs offer a safe and economic antiviral agent against ToMV.


Assuntos
Antioxidantes/farmacologia , Nanopartículas/administração & dosagem , Doenças das Plantas/imunologia , Solanum lycopersicum/imunologia , Tobamovirus/patogenicidade , Óxido de Zinco/farmacologia , Biomarcadores/análise , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/virologia , Estresse Oxidativo/efeitos dos fármacos , Doenças das Plantas/virologia , Óxido de Zinco/administração & dosagem
8.
Plants (Basel) ; 10(3)2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33670990

RESUMO

During the spring of 2019, distinct virus-like symptoms were observed in the Kafr El-Sheikh Governorate in Egypt in naturally infected eggplants. Leaves of affected plants showed interveinal leaf chlorosis, net yellow, chlorotic sectors, mottling, blisters, vein enation, necrotic intervention, and narrowing symptoms. The Alfalfa mosaic virus (AMV) was suspected of to be involved in this disease. Forty plant samples from symptomatic eggplants and 10 leaf samples with no symptoms were collected. The samples were tested by double antibody sandwich ELISA (DAS-ELISA) using AMV-IgG. Six of the 40 symptomatic leaf samples tested positive for AMV, while, DAS-ELISA found no AMV in the 10 leaf samples without symptoms. The AMV Egyptian isolate (AMV-Eggplant-EG) was biologically isolated from the six positive samples tested by DAS-ELISA and from the similar local lesions induced on Chenopodium amaranticolor and then re-inoculated in healthy Solanum melongena as a source of AMV-Eggplant-EG and confirmed by DAS-ELISA. Reverse transcription polymerase chain reaction (RT-PCR) assay with a pair of primers specific for coat protein (CP) encoding RNA 3 of AMV yielded an amplicon of 666 bp from infected plants of Solanum melongena with AMV-Eggplant-EG. The amplified PCR product was cloned and sequenced. Analysis of the AMV-Eggplant-EG sequence revealed 666 nucleotides (nt) of the complete CP gene (translating 221 amino acid (aa) residues). Analysis of phylogeny for nt and deduced aa sequences of the CP gene using the maximum parsimony method clustered AMV-Eggplant-EG in the lineage of Egyptian isolates (shark-EG, mans-EG, CP2-EG, and FRE-EG) with a high bootstrap value of 88% and 92%, respectively. In addition to molecular studies, melatonin (MTL) and salicylic acid (SA) (100 µM) were used to increase the resistance of eggplant to AMV- infection. Foliar spray with MLT and SA caused a significant increase in the morphological criteria (shoot, root length, number of leaves, leaf area, and leaf biomass), chlorophyll and carotenoid content, antioxidant enzymes, and gene expression of some enzymes compared to the infected plants. On the other hand, treatment with MLT and SA reduced the oxidative damage caused by AMV through the reduction of hydrogen peroxide, superoxide anions, hydroxyl radicals, and malondialdehyde. In conclusion, MLT and SA are eco-friendly compounds and can be used as antiviral compounds.

9.
Int J Biol Macromol ; 163: 1261-1275, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32659403

RESUMO

Bean yellow mosaic virus (BYMV) is the main cause of the mosaic and malformation of many plants, worldwide. Thus, the triggering of plant systemic resistance against BYMV is of great interest. In this endeavor, we aimed to explore the capacity of new carboxymethyl chitosan-titania nanobiocomposites (NBCs, NBC1,2) to trigger faba bean plants resistance against BYMV. Effects of NBCs on faba bean (Vicia faba L.) disease severity (DS), growth parameters, and antioxidant defense system activity were investigated under BYMV stress. Noticeably that the DS in NBCs-treated faba bean was significantly reduced compared to untreated plants. Moreover, treatment with NBCs was remarkably increased growth indices, photosynthetic pigments, membrane stability index, and relative water content compared to challenge control. Additionally, enzymatic and non-enzymatic antioxidants and total soluble protein were significantly increased. Contrary, electrolyte leakage, hydrogen peroxide, and lipid peroxidation were reduced. Interestingly that NBC1 has higher efficacy than NBC2 in triggering plant immune-system against BYMV as indicated from DS percentage (DS = 10.66% and 19.33% in case of plants treated with NBC1 and NBC2, respectively). This could be attributed to the higher content of TNPs in NBC1 (21.58%) as compared to NBC2 (14.32%). Overall, NBCs offer safe and economic antiviral agents against BYMV.


Assuntos
Quitosana/análogos & derivados , Nanocompostos/química , Doenças das Plantas/virologia , Potyvirus/fisiologia , Titânio/química , Vicia faba/química , Vicia faba/virologia , Antioxidantes/metabolismo , Carotenoides/química , Quitosana/química , Clorofila/química , Clorofila/metabolismo , Espectroscopia de Ressonância Magnética , Peso Molecular , Tamanho da Partícula , Espécies Reativas de Oxigênio , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
10.
Foods ; 9(5)2020 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-32456227

RESUMO

Synthetic antimicrobials have a negative impact on food quality and consumer health, which is why natural antimicrobials are urgently needed. Coagulase-negative staphylococci (CoNS) has gained considerable importance for food poisoning and infection in humans and animals, particularly in biofilms. As a result, this study was conducted to control the CoNS isolated from food samples in Egypt. CoNS isolates were selected on the basis of their antibiotic susceptibility profiles and their biofilm-associated behavior. In this context, a total of 29 different bacteriophages were isolated and, in particular, lytic phages (6 isolates) were selected. The host range and physiological parameters of the lytic phages have been studied. Electron microscopy images showed that lytic phages were members of the families Myoviridae (CoNShP-1, CoNShP-3, and CoNSeP-2 isolates) and Siphoviridae (CoNShP-2, CoNSsP-1, and CoNSeP-1 isolates). CoNShP-1, CoNShP-2, and CoNShP-3 were found to be virulent to Staphylococcus haemolyticus, CoNSsP-1 to Staphylococcus saprophyticus and CoNSeP-1 and CoNSeP-2 to Staphylococcus epidermidis. Interestingly, the CoNShP-exhibited a typical polyvalent behavior, where not only lysis CoNS, but also other genera include Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Staphylococcus aureus (VRSA), Bacillus cereus and Bacillus subtilis. In addition, CoNShP-3 phage showed high stability at different temperatures and pH levels. Indeed, CoNShP-3 phage showed an antibiofilm effect against Staphylococcus epidermidis CFS79 and Staphylococcus haemolyticus CFS43, respectively, while Staphylococcus saprophyticus CFS28 biofilm was completely removed. Finally, CoNShP-3 phage demonstrated a high preservative efficacy over short and long periods of storage against inoculated CoNS in chicken breast sections. In conclusion, this study highlights the control of CoNS pathogens using a polyvalent lytic phage as a natural antibacterial and antibiofilm agent from a food safety perspective.

11.
Molecules ; 25(10)2020 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-32429524

RESUMO

Cucumber mosaic cucumovirus (CMV) is a deadly plant virus that results in crop-yield losses with serious economic consequences. In recent years, environmentally friendly components have been developed to manage crop diseases as alternatives to chemical pesticides, including the use of natural compounds such as glycine betaine (GB) and chitosan (CHT), either alone or in combination. In the present study, the leaves of the cucumber plants were foliar-sprayed with GB and CHT-either alone or in combination-to evaluate their ability to induce resistance against CMV. The results showed a significant reduction in disease severity and CMV accumulation in plants treated with GB and CHT, either alone or in combination, compared to untreated plants (challenge control). In every treatment, growth indices, leaf chlorophylls content, phytohormones (i.e., indole acetic acid, gibberellic acid, salicylic acid and jasmonic acid), endogenous osmoprotectants (i.e., proline, soluble sugars and glycine betaine), non-enzymatic antioxidants (i.e., ascorbic acid, glutathione and phenols) and enzymatic antioxidants (i.e., superoxide dismutase, peroxidase, polyphenol oxidase, catalase, lipoxygenase, ascorbate peroxidase, glutathione reductase, chitinase and ß-1,3 glucanase) of virus-infected plants were significantly increased. On the other hand, malondialdehyde and abscisic acid contents have been significantly reduced. Based on a gene expression study, all treated plants exhibited increased expression levels of some regulatory defense genes such as PR1 and PAL1. In conclusion, the combination of GB and CHT is the most effective treatment in alleviated virus infection. To our knowledge, this is the first report to demonstrate the induction of systemic resistance against CMV by using GB.


Assuntos
Betaína/farmacologia , Quitosana/farmacologia , Cucumis sativus/efeitos dos fármacos , Cucumovirus/efeitos dos fármacos , Resistência à Doença/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Antioxidantes/metabolismo , Ascorbato Peroxidases/genética , Ascorbato Peroxidases/metabolismo , Catalase/genética , Catalase/metabolismo , Catecol Oxidase/genética , Catecol Oxidase/metabolismo , Quitinases/genética , Quitinases/metabolismo , Clorofila/metabolismo , Cucumis sativus/genética , Cucumis sativus/metabolismo , Cucumis sativus/virologia , Cucumovirus/crescimento & desenvolvimento , Cucumovirus/patogenicidade , Ciclopentanos/metabolismo , Resistência à Doença/genética , Giberelinas/metabolismo , Glucana Endo-1,3-beta-D-Glucosidase/genética , Glucana Endo-1,3-beta-D-Glucosidase/metabolismo , Glutationa Redutase/genética , Glutationa Redutase/metabolismo , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Ácidos Indolacéticos/metabolismo , Lipoxigenase/genética , Lipoxigenase/metabolismo , Oxilipinas/metabolismo , Peroxidase/genética , Peroxidase/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/virologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
12.
Carbohydr Polym ; 226: 115261, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31582052

RESUMO

The main objective of this work to explore new safe antiviral agents against hepatitis A virus (HAV), norovirus (NoV) and Coxsackievirus B4 (CoxB4) infections. In this context, we have successfully prepared new polyquaternary phosphonium oligochitosans (PQPOC1,2) to use them as natural synergistic in-situ bioreductants of silver ions into nanosilver and stabilizing agent for these nanosilver to fabricate PQPOCs-AgNPs nano-biocomposites (NBC1,2). The antiviral performance of the PQPOCs and NBCs against FCV, HAV, and CoxB4 reflects great virucidal activities for NBCs as compared with PQPOCs with maximum viral reduction% (41.42, 80.62, and 84.04%) for NBC1 against FCV, HAV, and CoxB4, respectively. Furthermore, the antiviral activity of NBC1 is concentration- / pH-dependent where NBC1 acquired its maximum antiviral at [NBC1] = 200 µL/mL and pH 4. Based upon these facts, we could attribute the enhanced virucidal efficacy of NBC1: (i) binding of AgNPs to the virions active sites. (ii) Electrostatic interaction between the positive brushes of PQPOC and negative targets of viruses. (iii) Inducing ribonuclease catalyzed by CS to degrade the viral RNA and consequently prevents its transcription and translation.


Assuntos
Antivirais , Quitina/análogos & derivados , Enterovirus/efeitos dos fármacos , Vírus da Hepatite A/efeitos dos fármacos , Nanocompostos/química , Norovirus/efeitos dos fármacos , Prata/farmacologia , Antivirais/síntese química , Antivirais/química , Antivirais/farmacologia , Quitina/síntese química , Quitina/química , Quitina/farmacologia , Quitosana , Oligossacarídeos , Prata/química
13.
Virology (Auckl) ; 6: 1-10, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26512201

RESUMO

Hepatitis C virus (HCV) infection is a major health problem recognized globally. HCV is a common cause of liver fibrosis that may lead to liver cirrhosis or hepatocellular carcinoma. The aim of this study was to estimate the prevalence of HCV infection and genotyping among Egyptian and Saudi Arabian chronic patients using different molecular techniques. HCV RNA viral load was assessed by real-time polymerase chain reaction (RT-PCR) technology. For HCV genotyping, RT-PCR hybridization fluorescence-based method and reverse hybridization line probe assay (INNO-LiPA) were used. A total of 40 anti-HCV-positive patients with chronic hepatitis C were examined for HCV RNA, genotyping, and different laboratory investigations. In the present study, HCV genotypes 4, mixed 4.1b, and 1 were detected in patients of both countries, while genotype 2 was only detected in Saudi Arabian patients. Genotyping methods for HCV showed no difference in the classification at the genotype level. With regard to HCV subtypes, INNO-LiPA assay was a reliable test in HCV genotyping for the detection of major genotypes and subtypes, while RT-PCR-based assay was a good test at the genotype level only. HCV genotype 4 was found to be the predominant genotype among Egyptian and Saudi Arabian chronic patients. In conclusion, data analysis for detecting and genotyping HCV was an important factor for understanding the epidemiology and treatment strategies of HCV among Egyptian and Saudi Arabian chronic patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...